
1

Parking on the campus of a University is often complicated and sometimes
unbearable. Some areas are restricted to the general public, and the number of available
parking spaces may be unpredictable or diminished during popular events. Furthermore,
confirming whether there will be a convenient open parking spot for a driver is
impossible. This problem could prevent students from attending classes on time or,
likewise, a visitor from a game. To mitigate this issue, a system that allows users to
visualize live data of a parking lot would benefit the livelihoods of Iowa State visitors,
students, and professionals.

Our design had a list of criteria, such as the implementation of sensors,
reservation capabilities via a mobile application, and live accurate data. Additionally, we
had to consider the variety of users operating our system. We were motivated to create a
user-friendly, intuitive, and reliable system. Our team split into hardware and software
groups to manage their respective components.

After testing different detection methods, the hardware team selected ultrasonic
sensors to detect if a vehicle is parked in a spot. Moreover, for communication with a
server and database, the hardware is controlled by an Arduino microcontroller. To show
non-app users whether a space is reserved or open, the hardware module includes an
RGB LED indicating the spaces’ states. A single hardware module consists of four
sensors, a microcontroller, and an LED, taking the necessary data from four spaces.

The application needed to allow users to reserve a space and pay conveniently. To
develop the application the software group used React Native, allowing cross-platform
coding. The server had to receive data from the hardware, store it in our SQL database,
and send this information to the application.

Overall, from end to end, the system consists of our hardware module mounted on
a post in the middle of four parking spots. The data taken will be sent to our database
every second, becoming available to our application. If a user reserves a place, this
request will be sent to the server and indicated by our hardware with a white light for the
corresponding parking spot.

Our design follows our requirements but could be improved in future iterations.
Some possible improvements involve increasing the reliability of the entire system,
updating the user interface to enhance intuitiveness, and testing different sensors, such as
cameras, to maximize accuracy.

This documentation will resolve most questions regarding research, design,
implementation, etc.

2

Learning Summary

Development Standards & Practices Used
Practices:

●​ Hardware
○​ Circuit Design
○​ Rapid Prototyping
○​ Embedded Systems

●​ Software
○​ Source Control
○​ Testing
○​ App Development

●​ Project
○​ Agile
○​ Kanban

Engineering Standards:

All Standards are described in Section 2.2 of this Design Document.

●​ Hardware
○​ IEEE 802.2a-1993

●​ Software
○​ IEEE 3156-2023

●​ Project
○​ Standard 14-5A-5 C

Summary of Requirements

●​ Software
○​ The user interface does not impede users from driving.
○​ The app is intuitive for users.

●​ Hardware
○​ Sensors should be able to detect when a car has pulled in or left a parking

spot.
○​ Withstand being outside for extended periods.
○​ Reliably send data to the server and keep it up to date.

●​ Server

3

○​ MySQL database and Express.Js server to send data from both the
hardware and the application.

○​ An Advanced reservation system to minimize user interaction with the
phone while driving, based on insights from user experience design.

○​ A robust and scalable infrastructure to handle the growing volume of users
and environmental challenges, as informed by technical and quality
assessments.

Applicable Courses from Iowa State University Curriculum
●​ SE

○​ SE 3190 - User Interfaces
○​ COMS 3090 - Software Development Practices
○​ CPR E 2880 - Embedded Systems

●​ CPRE
○​ CPRE 3810 - Computer Organization and Assembly Level Programming
○​ CPR E 2880 - Embedded Systems

●​ EE
○​ EE 2850 - Problem Solving Methods
○​ EE 2300 - Electronic Circuits and Systems

●​ CYBE
○​ CYB E 2310: Cyber Security Concepts and Tools
○​ CYB E 2340 - Legal, Professional, and Ethical Issues in Cyber Systems

New Skills/Knowledge acquired that was not taught in courses
●​ Software

○​ Server Design
●​ Hardware

○​ Arduino programming
■​ Connecting Arduino hardware to WiFi
■​ Uploading sensor data to a server

○​ Arduino/hardware simulation
○​ Rapid prototyping and iteration
○​ Soldering

4

Table of Contents
1 Introduction​ 7

1.1 Problem Statement​ 7
1.2 Intended Users​ 8

2 Requirements, Constraints, And Standards​ 8
2.1 Requirements & Constraints​ 8
2.2 Engineering Standards​ 8

3 Project Plan​ 9
3.1 Project Management/Tracking Procedures ​ 9
3.2 Task Decomposition ​ 11
3.3 Project Proposed Milestones, Metrics, and Evaluation Criteria ​ 11
3.4 Project Timeline/Schedule ​ 12
3.5 Risks And Risk Management/Mitigation ​ 13
3.6 Personnel Effort Requirements ​ 14
3.7 Other Resource Requirements ​ 14

4 Design​ 14
4.1 Design Context​ 14

4.1.1 Broader Context​ 14
4.1.2 Prior Work/Solutions​ 16
4.1.3 Technical Complexity​ 17

4.2 Design Exploration​ 17
4.2.1 Design Decisions ​ 17
4.2.2 Ideation ​ 17
4.2.3 Decision-Making and Trade-Off ​ 17

4.3 Proposed Design​ 18
4.3.1 Overview ​ 18
4.3.2 Detailed Design and Visual(s)​ 18
4.3.3 Functionality​ 26
4.3.4 Areas of Challenge​ 26

4.5 Design Analysis​ 27
5 Testing​ 27

5.1 Unit Testing​ 27
5.2 Interface Testing​ 28
5.3 Integration Testing​ 28
5.4 System Testing​ 28
5.5 Regression Testing​ 28
5.6 Acceptance Testing​ 28
5.7 Security Testing​ 28
5.8 Results​ 28

6 Implementation​ 29
7 Professional Responsibility​ 29

7.1 Areas of Responsibility​ 29
7.2 Project-Specific Professional Responsibility Areas​ 30

5

7.3 Most Applicable Professional Responsibility Area​ 31
8 Closing Material​ 31

8.1 Summary of Progress​ 31
8.2 Value Provided​ 32
8.3 Next Steps​ 32

9 References​ 33
10 Appendices​ 34

Appendix 1 -Operation Manual​ 34
Appendix 2 -Alternative/Initial Version​ 42
Appendix 3 -Other Considerations​ 42

User Profiles​ 42
Appendix 4 -Code​ 44
Appendix 5 -Team​ 44

Team Contract​ 44
Appendix 6 Glossary​ 48

6

List of figures/tables/symbols/definitions

Figure 3.2.1: Hardware Gantt chart​
Figure 3.2.2: Decomposition of Software Team​
Figure 3.4.1: Projected Timeline of Project​
Figure 3.4.2: Team ClickUp board​
Table 3.5.1: Tasks, Risks, and Likelihood Probability​
Table 3.6.1: Task and Time Decomposition​
Table 4.1.1: Broader Context​
Table 4.1.2: Pros and Cons List of our solution​
Figure 4.3.1: Overall Design Flowchart​
Figure 4.3.2: Application User Interface
Figure 4.3.3: Application User Interface Continued​
Figure 4.3.4: Application Flowchart​
Figure 4.3.5: Sketch of Physical Sensor Representation​
Figure 4.3.6: Schematic for Circuit
Figure 4.3.7: Prototype Circuit
Figure 4.3.8: Hardware Prototype Setup​
Table 4.4.1: Sensor Options
Table 7.1.1: Areas of Responsibility
Table 7.2.1: Project Specific Responsibilities
Figure 10.1.1: App Home Screen
Figure 10.1.2: Reserve Screen
Figure 10.1.3: Payment Screen
Figure 10.1.4: Pinout for an RGB LED
Figure 10.1.5: LED Setup
Figure 10.1.6: Ultrasonic Sensors Setup
Figure 10.1.7: Arduino Nano Power Setup
Figure 10.1.8: Arduino IDE Setup
Figure 10.3.1: User Profiles​

1 Introduction

1.1 PROBLEM STATEMENT

Currently, parking at Iowa State can be tricky. Finding parking is always arduous because you must
consider multiple things. This includes, parking that is staff only, if the lot you want to park in is full, and
how long it could take to find a spot. This project aims to eliminate these issues by streamlining the parking
experience. Our team will create a detection-based system to monitor parking spots and update an app that
students, teachers, or whoever may need to park on campus and allow them to view and reserve available
parking to eliminate confusion campuswide.

7

1.2 INTENDED USERS

The intended users for our project are students, faculty, the parking division, and visitors on campus
looking for parking spaces. Students often face the challenge of finding a parking spot before class starts.
Although faculty have reserved lots, they still need help finding the most ideal space. Additionally, visitors
to the campus who are attending events or meetings also need help finding parking spaces. Lastly, the
parking division will need access to parking information to correctly identify when someone is
inappropriately parked to issue tickets. By developing a detection-based system that monitors parking spots
and updates an app, our project aims to address the parking issues these user groups face. This will allow
them to view and reserve the most convenient and available parking spots, streamlining the campus parking
experience and eliminating confusion.

2 Requirements, Constraints, And Standards

2.1​ REQUIREMENTS & CONSTRAINTS

We have divided our requirements into two categories: Functional Requirements and Non-Functional
Requirements. Functional Requirements include goals that have definitive results. Non-functional
requirements describe conditions that do not list specific numerical values but are areas of focus.

Functional Requirements:
Our functional requirements include live sensor data, a mobile app, a way to communicate with non-app
users, accept payments, and a way for the parking division to view violations in real-time. Our sensors must
send live, up-to-date information about parking spaces. Each sensor must be able to tell if there is a car in a
parking space and the sensor information must be sent to our server to ensure the user gets reliable parking
data. A mobile application must be user-friendly and allow users to reserve parking spots for a given lot.
Another requirement we must meet is a way to communicate with users without the app by directing the
user through a parking lot. Our final functional requirement is a unique way to accept payment from the
user within the app and through an online version of our app.

Non-Functional Requirements:

Our non-functional requirements include creating a system with low latency to keep the status of parking
spots accurate. Additionally, the reliability of our application, server, and hardware are pertinent to ensure a
user-friendly system. Furthermore, our server and application need to be online and working consistently.
To hold the trust of our clients, our server and application must encrypt and protect user information while
taking secure payments. Our application must be presentable and navigable to gain popularity and keep
customers.

Constraints:
The hardware for our system must have minimal downtime. However, uptime cannot be guaranteed since
the sensor will be outdoors. Therefore, the sensor needs to be detected as offline as soon as possible so that
maintenance can be done.

2.2​ ENGINEERING STANDARDS

IEEE 3156-2023

8

Standard Ruling: A standard for privacy-preserving computation integrated platforms is needed to meet the
evolving requirements of multi-sourced data computing and sharing. Requirements of privacy computation
integrated platforms, including the reference architecture, the functional requirements, the performance
requirements, and the security requirements of privacy-preserving computation integrated platforms, are
provided by this standard.

Justification: Our project will require us to take user payments through our app. We must implement
security systems that protect those users from potential attempts to steal information.

IEEE 802.11g-2003

Standard Ruling: IEEE 802.11g-2003 is an amendment to the IEEE 802.11 specification that operates in the
2.4 GHz microwave band. The standard has extended the link rate to up to 54 Mbit/s using the same 20
MHz bandwidth as 802.11b to achieve 11 Mbit/s. Under Wi-Fi's marketing name, this specification has
been implemented worldwide. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007
standard and Clause 19 of the published IEEE 802.11-2012 standard.

Justification: The Arduino Nano 33 IoT we are using connect over wifi using the 802.11 protocols, which
we will be using to send and pull data from our server.

Standard 14-5A-5 C: Parking, Stacking Space Size, And Drive Dimensions

 1. The minimum size of a standard off-street parking space is nine feet by eighteen feet (9' x 18'),
exclusive of aisle width.
 2. The minimum size of a compact off-street parking space is eight feet by fifteen feet (8' x 15'),
exclusive of aisle width.

Justification: While this standard is for Iowa City specifically, this applies more generally to parking lots
nationwide. These two subsections of this standard apply to our project by giving us dimensions to work
within. Therefore, any hardware we deploy to the lot should not infringe on these dimensions.

3 Project Plan
3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team has decided to adopt the agile management style. As a group, we have decided it is best to meet
twice a week to work on parts of our project while also meeting with the client/advisor once a week. While
we meet often, we do not have a structured set of tasks each time we meet and just tackle whatever we feel
is most pressing that day. This works best for us because, between the hardware and software, many
unexpected issues could arise that, if we were on a stricter timeline, would cause significant shifts in focus
that would delay the project completion time.

We are using a project management software called ClickUp to track our progress. This website allows us
to organize our tasks into different categories based on the completion of the task. ClickUp allows specific
team members to review and complete the assigned tasks as needed. This makes it easy for our team to see
who should be doing what and who to contact if there is an issue. Additionally, we are organizing our files
in Google Drive to stay orderly.

9

https://en.wikipedia.org/wiki/GHz
https://en.wikipedia.org/wiki/Mbit/s
https://en.wikipedia.org/wiki/Bandwidth_(computing)
https://en.wikipedia.org/wiki/802.11b_channels
https://en.wikipedia.org/wiki/IEEE_802.11-2007#802.11-2007
https://en.wikipedia.org/wiki/IEEE_802.11#802.11-2012

Previously, our team was using Trello. However, this became limited due to the inability to create Gantt
charts, the lack of task categorization, and the increasingly complex relationship between our tasks.
Switching to ClickUp addressed all these problems while giving us other valuable features.

Figure 3.2.1: Hardware Gantt Chart

10

3.2 TASK DECOMPOSITION

As an agile team, we decompose tasks as small as possible; for example, when considering the overall task
of researching information about the hardware, we broke it down into researching boards, sensors, how to
power the boards, etc.

Figure 3.2.2: Decomposition of Software Team

3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Hardware Team

One of the main upcoming objectives for the hardware team is to have a prototype by the end of the
semester. We have broken this down into more achievable tasks to accomplish this goal. The first is to get
the ultrasonic sensor working with Arduino. The success of this task will be measured by having LEDs
connected to the Arduino that will light up if a vehicle is within 70cm of the ultrasonic sensors. The next
task was to link multiple sensors to one board and get the system functioning for all the sensors. This is
easily measured by getting the system to work with a standard test. Our goal at the end of this project is to
know when a car has left a parking spot within 10 seconds of leaving. In other words, we want our program
to have live data with a buffer of 30 seconds.

11

App Development Team

The app team has many milestones to accomplish to succeed in creating a usable application. For example,
making the first functional prototype is the main upcoming objective for the app development team. This
involves having a functional live application that displays our app requirements. We will first have to
finalize our UI design by breaking this task into subtasks. This will be accomplished after discussing which
design suits our needs. After choosing a UI design, we will program with React Native. Our prototype will
have multiple pages, so the creation of each page could be broken down into a subtask. This extrapolates
our main idea of prototyping, as each page will require its prototyping phase.

3.4 PROJECT TIMELINE/SCHEDULE

Figure 3.4.1: Projected Timeline of Project

The image above shows our team’s Gantt chart. This is not one of our primary resources in scheduling.
Instead, we use our team’s Trello board, as mentioned earlier.

For each sprint, we focus on 1-2 tasks each group can work on throughout the week. Once the week is over,
we discuss what task we got done, the issues we encountered, and how those issues will impact the
following week. Once the problems have been discussed and potential solutions brought forth. We talk
about what we should get done in the following week. Coming up with a weekly schedule allows us to
address new problems quickly and continually improve our design as we become more knowledgeable
about our project.

12

Figure 3.4.2: Team ClickUp board

3.5 RISKS AND RISK MANAGEMENT/MITIGATION

We have included a few scenarios in the table below to show examples of the risks attached to our tasks.
Overall, our risks are insignificant but not negligible. To mitigate these risks, we will become aware of all
possible risks by documenting them before each task is started. This will decrease the probability of these
risks occurring, saving us many hours and potential money as it is less likely for equipment to become
damaged. If we encounter a hazardous task, we will reevaluate the task to lower the risk factor. For our
project, the main risk is losing time to ventures that do not end up contributing to the end goal of our
project.

Table 3.5.1: Tasks, Risks and Likelihood Probability

Task Risks Probability

Learn the basics of React
Native

No risks. N/A

First app prototype Spending many hours on an
idea that does not satisfy our

needs.

20%

Create hardware prototype Similar to our other
prototypes, we could lose

many hours if the prototyping
is unsuccessful.

35%

13

Testing hardware We risk damaging the
equipment to test the

hardware in a real-world
application.

10%

3.6 PERSONNEL EFFORT REQUIREMENTS

Table 3.6.1: Task and Time Decomposition

Task Hours Required

Design UI 10

First App Prototype 95

Fully Functional Server 30

Arduino Prototype 70

Test Bandwidth Capacity of Prototype 10

Hardware to Server 30

Documentation 20

3.7 OTHER RESOURCE REQUIREMENTS

The leading resource for completing our project is hours. With the volume of our school work, it is difficult
to allot time for this project. Additionally, it will be necessary for us to acquire an Apple Developers
subscription to publish our application to the App Store.

4 Design

4.1 DESIGN CONTEXT

4.1.1 Broader Context

In a broader context, our design is meant for visitors, students, and staff alike. Many people who
have been to the ISU campus have expressed that parking is an unsatisfactory experience as it is often a
confusing and stressful task. With all of these people in mind, we must design this project with these users'
safety and satisfaction. In Table 4.1.1, our team has listed the areas we prioritize to protect the end users’
well-being.

14

Table 4.1.1: Broader Context

Area Description Examples

Public health,
safety, and
welfare

This project affects the general well-being
of the users of our application via the
inherent risks of using an application in a
vehicle, i.e., being distracted by looking at a
phone while driving to navigate an area.
This is especially pertinent in a
pedestrian-heavy area such as a parking lot.
However, with our planned navigation
system, we intend to mitigate these risks by
parking efficiency while the application is
being used. New possible hazards are also
introduced by deploying sensors to a
parking lot. These sensors themselves are
harmless to the public, however, the
supporting hardware may increase the
chances of single-vehicle collisions if not
heeded adequately by drivers.

We have been aware of our ultrasonic
sensors and have verified that they
will be harmless to humans and
animals. Having a navigation feature,
our application will require a phone
to be looked at while driving. We will
have a disclaimer on the app to
mitigate this.

Global, cultural,
and social

Our project is aimed at employees of Iowa
State, students, and visitors. It allows these
groups to park more efficiently and more
conveniently. If used correctly, all users will
be able to park quicker.

Our reservation service will eliminate
the need to drive in circles to find a
parking spot.

Environmental Our solution will increase power drawn
from the relevant power plants in the area
and could contribute to the detrimental
environmental effects of electronics
components mining and manufacturing.

While the power requirements of our
hardware systems will be low
individually, deploying this system to
an entire parking lot may draw a
significant amount of power. The
software systems will require
processing time on phones and a
dedicated server, which must be kept
cool, further increasing this solution’s
power draw. The resources needed for
our hardware have to be mined and
manufactured into the components
necessary for deployment.

Economic Our system’s automation could lower the
need for monitoring available parking lots.
Additionally, if added to multiple parking
lots, our system could offer a new job of
maintenance and upkeep of the entire
system. The university will be liable to
perform any maintenance or pay for it if
necessary.

The economic impact of our solution
will require a payment from users per
parking session. An installation and
labor fee from the university or
relevant parties to install and maintain
the hardware we plan to deploy. The
university’s parking division will
have to spend less on refueling their
vehicles since our application will

15

provide them with relevant overtime
and no-payment parking data.

4.1.2 Prior Work/Solutions

Throughout the planning process, we encountered three companies trying to solve a similar issue: parking
can be stressful and overwhelming. The first company is ParkMobile, the second is Parkingapp.com, and
the third is SpotHero.

ParkMobile makes it easy for users to pay for a parking spot; it also allows users to search for selective
parking spots, whether that is to be close to a specific location or to be near an electric car charger (Lister,
2020). ParkMobile is unique in these ways. One advantage of ParkMobile is that they are supported by all
platforms making it easy to use. Some things that differentiate our solution from ParkMobile are the ability
to guide users to open parking spots and our live data on available spots (Zuckerman, 2019).

Parkingapp.com was very simple and basic. There were not any unique features of their app. Although they
did not have any uniqueness to them, they did have some advantages. They are compatible with
Parking.com and Parking Passport. Disadvantages for this company are their need for more information and
the community. When researching this company, our team took this as a takeaway of what not to do and
what we wanted to include for our users.

SpotHero allows users to see real-time parking availability and prices based on location. They are achieving
something similar to our solution. One advantage of their product is their allowance of user reservations
and payments. Although this sounds like a very sound and well-organized solution, it has disadvantages:
the accuracy and reliability of their parking lot availability are only sometimes correct, and their service
fees increase the overall cost of parking.

Based on the other solutions out there, we have decided that our solution must have advantages for each
company to accomplish the best solution on the market by letting users reserve spots from the comfort of
their homes, guiding the users to their reserved spots, and allowing users to search for available parking
with their specific needs. Our final design will follow this pros and cons list in Table 4.1.2.

Table 4.1.2: Pros and Cons List of our solution

Pros Cons

Tension free operation It relies on the accessibility of technology

Easy and secure way to pay There is no complex prevention of
inappropriate or illegal parking

Ability to reserve a parking spot Reckless drivers could damage technology

Live data on parking lot availability Handling app users and non app users

Hardware maintenance

16

4.1.3 Technical Complexity​

Hardware

On the hardware side, our team uses WiFi NINA signals to send data between Arduino boards and a server.
This will be done via the NINA W102 chip on the Arduino Nano 33 IoT board. This chip allows the board
to be used as an internet access point. This WiFi functionality is accessed through the Arduino library
system. This connection between hardware and a server is essential for our project. It is how hardware and
software are able to talk and interact. Hardware will send spot status to the server and receive if a spot is
reserved. Based on this information and sensor data, it will update the system LEDs to the correct color, red
occupied, green for open, and white for reserved. Finally, our hardware team will review the documentation
and circuitry to minimize the system’s power consumption while maximizing its sustainability and ease of
maintenance.

Software

The software portion of our design involves multiple levels of software development. These include mobile
application development, server communication, and managing a database. The application is the vessel for
users to communicate with our server. The data needed by the server will be stored in our database. The
server is essential as it is responsible for receiving the live data from our hardware. The user interface for
the application will be simple, but this is a benefit of our design as it will ensure all users successfully
operate our system. All three portions of the software team are essential to communicate with the user and
hardware.

4.2 DESIGN EXPLORATION

4.2.1 Design Decisions

Several critical design decisions were pivotal in developing our innovative solution to shaping the final
product. Selecting the appropriate sensor for vehicle detection was a foundational step, ensuring our system
could accurately and reliably identify vehicles in various conditions. Recognizing the diversity of our user
base, we also strategized how to assist users not utilizing our app, aiming for inclusivity and accessibility in
our services. The reservation system presented another complex challenge, prompting us to devise a
user-friendly, efficient method for managing bookings. Finally, determining the most convenient times and
locations to make payments was crucial as we sought to streamline the user experience and enhance
satisfaction. Each of these decisions was made carefully considering their impact on functionality, user
experience, and the overall success of our project.

4.2.2 Ideation

When choosing sensors to detect vehicles, we went through a few iterations. First we started with infrared
sensors because our client wanted to use those if possible. However, after some feasibility testing, we
learned we would need an emitter and receiver for each spot. Not to mention that unskilled drivers would
likely hit the emitter and receiver. Then, the team went through a brainstorming phase where we discussed
possible ideas for a solution. Cameras, LiDAR, and Ultrasonic sensors were brought up during the
brainstorming. We even discussed a new technology allowing the parking spot to detect when weight is
present using a pressure plate sensor. Ultimately, we went with Ultrasonic sensors because the team is most
familiar with them, their relatively low cost, and their ability to function in various conditions that other
options may fail.

4.2.3 Decision-Making and Trade-Off

Throughout our project, decision-making and looking at trade-offs were very important. We had to make
multiple decisions throughout this project, but the two most important ones were what software to use for

17

our application and what microcontroller to use for our hardware. When considering what software to use
for our project we went with React Native and Node JS. We came to this decision because react native
allowed us to leverage our current Javascript experience.

●​ React Native:
○​ Cross-platform
○​ Easy integration with 3rd party services.

●​ Node JS:
○​ included everything we needed without extra overhead

When looking at what microcontroller to use, we as a team decided to use Arduino, more specifically,
Arduino Nano 33 IoT board. Our team has the most experience working with Arduino and thought that
using one of their boards for our project would be most beneficial to us. Arduino has countless resources
for help and troubleshooting. Arudino also makes it easy for hardware to interact with software. We
decided to go with the Nano 33 IoT board for its size and specific capabilities.

●​ Arduino Nano 33 IoT board:
○​ Small size with 14 input/output pins
○​ Wifi Capability through the Wi-Fi Nina chip

These decisions were essential for making our project come together and end with a successful prototype.

4.3 PROPOSED DESIGN

4.3.1 Overview

For our intelligent parking lot system to operate, ultrasonic sensors pointed at each parking space will
detect the state of the parking space or whether a space is occupied. This information will be sent to our
server utilizing an Arduino board connected to the internet through the NINA chip onboard. This
information will then be updated in a server database. This information will be accessible by the mobile
application. Our users will interact with our system via a mobile application. This app will allow users to
search for a parking lot near their destination, reserve a space, and pay for parking. The user can simply pay
for parking without participating in the reservation process. Once the user parks in their reserved parking
spot, the application will transition into the payment page, where the user will securely enter their payment
information. If the user bypasses the reservation system, they will park in the lot and be instructed to take
note of the parking space number where they parked. They can enter this information into the app and pay
for parking. If a driver does not have the application downloaded, they can scan a QR code located in the
lot to access a “one-time use” version of the application where they can pay.

4.3.2 Detailed Design and Visual(s)

Overall Design:

18

Figure 4.3.1: Overall Design Flowchart

Our system is broken into two main components: hardware and software. The hardware component of the
system takes the multiple Arduino circuits and uses the wifi module to output our hardware information to
our server. The software component of our system uses the server loaded with the sensor information and
sends it to the application. The application is a way for users to check and reserve parking spaces. The
server is also used to send information back to the LED display. This display will represent the parking lot
availability, which allows users without the application to use our system.

Software:

Figure 4.3.2: Application User Interface

19

Figure 4.3.3: Application User Interface Continued

Figure 4.3.4: Application Flowchart

Above is the flowchart for our application. The user interface of our application will consist of two
different pathways: Reserve and pay.

20

Reserve:

The user will open the application and choose the reserve tab on the navigation bar on the screen's bottom.
The user will then enter their destination in a search box. Each parking lot will have a respective box
showing the address, distance from the destination, and number of available parking spots. The user will
choose their desired lot to continue to the next step. All of the map functionality will be completed utilizing
Google Maps.

After choosing a lot, our application will signal the server to pull an available lot number. This number will
be stored in a new variable to ensure actual reservations. Once parked, the application will continue to the
payment function.​

Pay:

For the users who arrived at their reserved spot and those who did not participate in a reservation but are
still using the lot, the payment process will begin by selecting the app's payment button or scanning a QR
code in the parking lot. The payment page will have prompts for spot number, credit card information, and
amount of parking time. The users who reserve a spot will have their spot number automatically entered
into the spot number prompt. In contrast, the other users will have to take note of their space number, which
will be located on a sign in front of the space, and enter it into the app manually. After the necessary
information is entered, the app will create a receipt, which will be downloadable for the user. This is the
final step of the payment process.

Hardware:

On the hardware side, our team has set out to create an Arduino-based detection system that will be used to
sense whether cars are parked or not. Hardware uses WiFi signals to send data between Arduino boards
and a server. This will be done via the NINA W102 chip on the Arduino Nano 33 IoT board. This chip
allows the board to be used as an internet access point. This connection between hardware and a server is
essential for our project. It is how hardware and software are able to talk and interact. Hardware will send
spot status to the server and receive if a spot is reserved. Based on this information and sensor data, it will
update the system’s RGB LEDs to the correct color, red occupied, green for open, and white for reserved.

21

Physical Parking Lot Setup:

Figure 4.3.5: Sketch of Physical Sensor Representation

1 Arduino Nano 33 IoT per post with four ultrasonic sensors connected to it. Each sensor will point
downwards toward an individual parking spot from an elevated position on the post.

These sensors will be pointed down at an estimated angle of 30°, as represented by Figure 4.3.5. This setup
allows for minimal posts to be inserted into the parking lot.

22

Sensor Arduino Circuit:

Figure 4.3.6: Schematic for Circuit

Each Arduino Nano board will have four 5V (Connected to red wire represented in Figure 4.3.6) ultrasonic
sensors connected to it. The sensors will trigger on their own pins (Teal wire represented in Figure 4.3.6).

The echo signals are received on their own pins so the board can differentiate them. (Purple wire
represented in Figure 4.3.6).

Coming out of the Arduino Nano board, there are 4 RGB LEDs. Each color coming from the Nano goes
through a 220-ohm resistor and then goes to the LED. These LEDs will be lit up either red, green, or white.
Red represents an occupied spot, green represents an open spot, and white represents a reserved spot.

23

Final Prototype:

Figure 4.3.7: Prototype Circuit

This is an image of a prototype for our hardware circuitry. Everything is being controlled by an Arduino
Nano 33. There are 4 waterproof sensors coming off of the Nano, each sensor has a power, trigger, echo,
and ground pin, all connected to the Nano on different pins. This system also has 4 RGB LEDs coming
from the Nano.

24

Figure 4.3.8: Hardware Prototype Setup

This is an image of our final design prototype for 4 parking spaces. There is a box mounted to a 5.5-foot
pole. The box contains the 4 ultrasonic sensors, 4 RGB LEDs, and the Nano board circuitry. This setup has
the sensors mounted in each corner of the box with an LED representing the spot status mounted right
above the sensor. The rest of the circuit will be placed within the mounted box. This is only a prototype. If
this design were to go further, we would mount a weatherproof box to protect our circuit and our
components.

25

4.3.3 Functionality

Users can enter our lot regardless of whether they have the app or not. If the user has the app, they will be
able to navigate to their desired location, see what parking lots are nearby, and determine if they are able to
park there either as a student, a staff member, or a visitor. Once they determine the lot they want to go to,
the user can check the availability of the parking lot. Based on that information, they can either drive
directly to the lot or reserve a spot in the parking lot. Our application will direct the users who reserve a
spot to their respective location and then will pay upon arrival. Users who do not reserve a place will pay
after parking by using the app and entering their spot number, which will be posted near their parking
space. All necessary data will be taken from ultrasonic sensors, sent to our server, and stored in a database.

4.3.4 Areas of Challenge

Our hardware team encountered a few challenges during the project. The first and most prominent issue
was connecting to the WiFi with our boards. On program startup, the boards try to connect to the Wifi but
almost always fail the first few attempts. We could not resolve this issue, but it maintains a stable
connection once the board connects. The next major issue we encountered was the implementation of our
interrupt handler. For our system, we wanted to make a post request every second, sending an updated spot
status. To do this, we decided to use an interrupt handler to allow the one-second time interval to be as
accurate and efficient as possible. While working on the functionality, we did not realize we needed to turn
off the handler after one second, and the post request was made. After testing without turning off the
handler, we ended up software-locking two of our boards. This was because the handler needed to be
synchronized with our system clock, but when making our post requests, it caused it to desync. This issue
set us back a few days as we were first unsure why the boards were locked, but upon further research, the
issue was resolved.

Finally, for the software, we had to ensure that our application is intuitive and safe enough to be used while
driving, even in a busy parking lot. We understand that using a phone while driving can be a safety risk.
Therefore, we had to minimize the user input while driving and use an acceptable interface for moving
applications. Our application does not take any input while the user is driving.

When developing our application, we encountered many challenges. Firstly, as this app was developed in a
cross-platform software environment, some components appeared differently in testing, affecting some
users' overall functionality. Our testing platform, Expo, had a software update that delayed our development
slightly as well.

4.4 TECHNOLOGY CONSIDERATIONS
Describing the distinct technologies we used in our design by highlighting the strengths, weaknesses, and
trade‐offs made in technology. Also, discussing possible solutions and design alternatives below:

Table 4.4.1: Sensor Options

Sensor Pros Cons

Infrared (IR)

●​ Preferred by the client
●​ Cheap

●​ Requires two sensors per parking
space

●​ Positioning sensors out of the way
of users would be tricky

●​ Sensitive to the color of the car

26

LiDAR
●​ Can detect everything

in an area
●​ Expensive
●​ Not entirely appropriate for our use

case

Ultrasonic
●​ Cheap
●​ Only need one sensor

per parking space
●​ Familiar to the team

●​ Little control over where the signal
goes

Pavement
●​ Discrete ●​ Super expensive

●​ Will have to renovate the whole lot
to implement

Cameras
●​ Could work over

multiple spaces
●​ Power intensive
●​ Difficult to implement
●​ Possibly expensive

Each of these different sensors would ultimately lead to a similar outcome for our project. Our design
would rely on these sensors to determine whether a car is parked in a spot. Based on this information, our
final decision was to use ultrasonic sensors because the team is most familiar with them, and relatively low
cost, and their ability to function in various conditions that other options may fail in.

4.5 DESIGN ANALYSIS

On the hardware side, we have created a base prototype for the detection system. This system takes an
Arduino Nano and connects four ultrasonic sensors and four RGB LEDs. We have tested this prototype,
and it is working well. We then implemented Wifi functionality so the boards can send sensor information
to our server and get reservation information to update our LED system. Based on this setup, we can
successfully mimic the parking process within a parking lot. We have looked into weatherproofing options
and have decided to encase the circuit in an enclosed metal case. We could not provide insulation for the
board but looked into thermal bubble foil to keep our circuit at working temps while shielding it from
fluctuating outer temperatures.

The software team coded an application that operates on IOS and Android devices for the application. The
application allows a user to find a parking lot and reserve a spot if one is available. Then, the user can pay
the parking fee promptly. Unfortunately, we could not accomplish a one-time-use function for
non-application users, but implementing it could be completed quickly. Additionally, our application is
currently out of stock to the public.

Our server and database implementation has been completed successfully. They operate as intended,
allowing our system to communicate fully. Our server was made with Express.js, and our database is an
SQL database. Together, these two components enable the storage of data and communication across
hardware and software.

5 Testing

5.1 UNIT TESTING

We conduct hardware testing on a feature level to ensure consistent functionality in varying conditions.
This includes testing the detection of objects with ultrasonic sensors and data transmission to the server. We
do manual regression testing on the software side when new features are implemented. This approach was

27

taken because setting up and maintaining a testing library would have strained our human resources. It is
resulting in a significant decrease in output.

5.2 INTERFACE TESTING

Our design incorporates two primary interfaces: a parking availability tracking hardware and a user-facing
application that displays parking lot status. We will thoroughly test the hardware's sensors,
communications, and reliability to meet our requirements. We will evaluate the software's user interface,
performance, and safety. The user interface must be visually appealing and intuitive for most users. While
developing, we checked that the application on both IOS and Android looked and performed similarly.

5.3 INTEGRATION TESTING

The two significant integrations are the connection from the hardware to the server and from the server to
the application. We need events picked up by the hardware to flow through the pipeline in real time. By
that, we mean that once a car has completely pulled out of a parking spot, it should appear in the app as
open. Our best way of testing this is to simulate the experience in our senior design lab. We will connect the
hardware and app to the server and simulate a car pulling into a spot. Our goal will be to upload the
hardware detection information to the server, and then the server will send that information to the app,
which will be updated within 20 seconds.

5.4 SYSTEM TESTING

The final step of testing would be field system testing. In this test, we would set everything up like a client's
lot and test various interactions and edge cases. If any issue occurs, we need to troubleshoot it on-site,
which could be better. We only want to do system testing once all our unit and integration tests pass.

5.5 REGRESSION TESTING

We explore ways to identify and prevent hardware malfunctions as we plan our hardware implementation.
While our unit tests will cover much of our software regression testing, we are also working on a
comprehensive test suite to detect potential regressions as we develop our code. As the hardware is
responsible for capturing crucial data and the app is our users' main point of interaction, these components
must remain stable and reliable.

5.6 ACCEPTANCE TESTING

Our acceptance test would mostly be handled through meetings with our client. Once we present our final
demo, the client will have the final say on whether our design meets his vision. We have the requirements
we came up with, but they can quickly become outdated if the client shifts thinking.

5.7 SECURITY TESTING

To avoid handling user payments, we use a third-party API from Stripe. Stripe has a good history of
making payments easy for users and developers. However, we must ensure that we store only the necessary
user information. We should be able to detect these through our code reviews.

5.8 RESULTS

Our unit and integration test will allow us to catch issues early, verify that we are ready for the next step,
and assist in identifying system regression. We will continually communicate with the client to meet their
needs when meeting requirements.

28

6 Implementation
The implementation phase of our project was a complex process of combining various systems into one
final prototype.

On the hardware side, we have various features that allow our boards to operate efficiently. We constructed
functions that gave us the ability to connect to the school’s WiFi system which will allow us to send spot
status information to our server. Along with the Wifi functions, we added ways to verify the connection
process for troubleshooting and maintenance purposes. We also designed functions for our ultrasonic
sensors that allow us to take multiple measurements of the parking spots and take the average distance of
any object detected for the most accurate information. We also implemented an interrupt handler that will
help with updating the server consistently. With the handler, it allows us to make post requests every second
using the Arduino’s system clock. Lastly, we added RGB functionality so users can observe spot status’.
This consists of an RGB LED handler that takes the measurement data combined with the information from
our server and updates the color of the LEDs based on whether the spot is open, closed, or reserved.

On the software side, we developed both a server and a mobile application. For the server, we tested
multiple databases to see what would fit our needs. We also implemented multiple requests that would be
used by both the hardware and the mobile application. Then for the mobile application, we created two
pages; a home page and a payment page. We broke the development down page by page. We simply created
each component individually and tested its functionality. After functionality was ensured, we continued to
add new components. After completing the front-end design, we added server requests to perform
communications between the server and the application. These requests get information about each parking
lot and assign the user to a parking space if they are reserving a spot.

7 Professional Responsibility
In this project, our team's approach to professional responsibility is embedded within a well-defined team
contract that outlines individual roles, communication protocols, decision-making policies, and quality
control measures, ensuring that all members adhere to high standards of ethical conduct and professional
practice. Our team's commitment to professionalism is evident through structured strategies for
collaboration, inclusive participation, and the resolution of any inclusion issues, with designated
responsibilities such as client interaction and project leadership reinforcing the importance of maintaining
professional integrity throughout the project's lifecycle. By agreeing to a clear set of consequences for any
breaches of this contract, our team underscores each member's serious commitment to the project's success
and upholding the professionalism expected in the engineering domain.

7.1 AREAS OF RESPONSIBILITY

We will discuss how the topics relate by applying the IEEE Code of Ethics to our broader context table
(Table 4.1.1). The IEEE Code of Ethics stresses the importance of protecting the public by encouraging
engineers to stand up for humanity against corruption. Global, cultural, and social topics concern being
truthful when releasing information to the public and treating all individuals with respect. The environment
portion

29

Table 7.1.1: Areas of Responsibility

Area IEEE Differences from NSPE

Work Competence An engineer should not work
in an area outside of their

expertise

Very similar

Financial Responsibility Avoidance of conflicts of
interest

NSPE is more focused on
shareholders and clients

Communication honesty Communicate truthfully to
protect the population

NSPE is more generally about
the company

Health, Safety, and
Well-being

Protecting the public by
encouraging engineers to

stand up for humanity against
corruption

NSPE has similar terms for
this category

Property Ownership Keep private information
secure

Protect the property of all
clients and privacy

Sustainability Make it known if the
environment is in danger

NSPE is more detailed in this
category

Social Responsibility Encourage coworkers and
seek to improve public

knowledge

Similar guidelines

7.2 PROJECT-SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS

Table 7.2.1: Project Specific Responsibilities

Area Is it relevant Performance

Work Competence It is irrelevant to our project
because we must learn and
work outside our current

knowledge. However, we still
do our best to create an

effective solution.

N/A

Financial Responsibility It is essential to be
responsible for the user's

payment information and the
money they send. We want to
do our best to avoid fraud and

embezzlement.

Medium

30

Communication honesty When reporting to the client,
we always ensure that we are

telling him the truth
regardless of how it may
affect his opinion of us.

High

Health, Safety, and
Well-being

Since we are creating an
application meant to be used

while driving, we need to
ensure that we are not

inhabiting the users driving
when using our app.

High

Property Ownership We are doing our best to
make our client and everyone
involved in this project feel

included and considered

Medium

Sustainability We are constantly considering
the environmental impacts of

our design

High

Social Responsibility We do our best to keep each
other in check. If someone is

doing something
questionable, we can always

talk it out.

High

7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

Safety is our most important concern because we want to ensure our users are safe using the app.

8 Closing Material

8.1 SUMMARY OF PROGRESS

Our team has created an embedded real-time system that provides parking spot availability information to
the students, faculty, staff, and visitors of Iowa State University. This system utilizes ultrasonic sensors to
detect vehicles and send this information to a server and database. The server sends up-to-date information
to a phone application. Finally, a user can reserve a parking spot through the application, this reservation is
sent to the server, which updates the database and an LED light in the reserved parking spot.

Hardware Accomplishments

The hardware team has created a prototype that takes in measurements from ultrasonic distance sensors and
uses the distance to determine if a spot is occupied. The hardware system is connected to the internet
through a library that we designed and built.

31

Software Accomplishments

The software team successfully created a mobile application that can reserve parking spots and take
payments. We managed to have an appealing design that is user-friendly. Along with the application, we
created a server and database to enable communications across domains. We performed great research on
app development that will serve us well in the future.

8.2 VALUE PROVIDED

Our prototype gives a good glimpse into how a system like this could work. It successfully allows users to
see which spots are available and allows users to reserve spots in advance. However, it needs some
improvements before it can solve the initial problem. Currently, only users that drive into a lot can see the
LEDs at each parking spot. It would be better if users could see not only how many spots are available (like
our current implementation) but also which specific spots were available. That would allow users to drive
directly to a subsection of the parking lot with the most open spaces. Another needed improvement is
allowing users to choose which spot they reserve. If a user’s lot preferences depend on how close they can
get to a building, users need to be able to reserve spots directly instead of being assigned a spot by the
system.

8.3 NEXT STEPS

There are a couple of next steps hardware would have wanted to take to improve our final product. The first
step would’ve been implementing an interrupt timing system for when to send data to the server. This
would have helped ensure the server does not get overloaded with requests. Another step the hardware team
wishes they completed is printing the PCB design we created and coming up with a more finalized
mounting for the sensors and the board. Doing this would have allowed for easier and more efficient mass
production if our project were to be fully implemented.

A few things that the software team would like to have done are: Create a screen which visualizes all of the
spots in a parking lot and allows users to select a spot to reserve. This would allow a more natural flow to
the app and help it feel intuitive. Secondly, the application should help guide users to their parking space
through some form of navigation API similar to Google Maps™ navigation.

32

9 References
[1]​ IEEE SA, “IEEE Standards Association,” IEEE Standards Association.
https://standards.ieee.org/ieee/3156/10834/
[2]​ IEEE SA, “IEEE Standards Association,” IEEE Standards Association.
https://standards.ieee.org/ieee/White_Paper/10123/
[3]​ “14-5A-5: CONSTRUCTION AND DESIGN STANDARDS:,” American Legal Publishing.
https://codelibrary.amlegal.com/codes/iowacityia/latest/iowacity_ia/0-0-0-23897
[4]​ M. Lister, “Get ready for takeoff!: 5 advantages of using the Parkmobile app for Airport Parking,”
ParkMobile,
https://parkmobile.io/blog/get-ready-for-takeoff-5-advantages-of-using-the-parkmobile-app-for-airport-park
ing/ (accessed Apr. 16, 2024).
[5] ​ A. Zuckerman, “Parkmobile Review: Pricing, pros, cons & features,” CompareCamp.com,
https://comparecamp.com/parkmobile-review-pricing-pros-cons-features/ (accessed Apr. 16, 2024).
[6] ​ “Find ways to pay for parking,” ParkingApp.com | Find Ways to Pay for Parking,
https://www.parkingapp.com/ (accessed Apr. 16, 2024).
[7] ​ “Frequently asked questions,” SpotHero, https://spothero.com/faq (accessed Apr. 16, 2024).

33

https://standards.ieee.org/ieee/3156/10834/
https://standards.ieee.org/ieee/White_Paper/10123/
https://codelibrary.amlegal.com/codes/iowacityia/latest/iowacity_ia/0-0-0-23897
https://parkmobile.io/blog/get-ready-for-takeoff-5-advantages-of-using-the-parkmobile-app-for-airport-parking/
https://parkmobile.io/blog/get-ready-for-takeoff-5-advantages-of-using-the-parkmobile-app-for-airport-parking/
https://comparecamp.com/parkmobile-review-pricing-pros-cons-features/
https://www.parkingapp.com/
https://spothero.com/faq

10 Appendices

APPENDIX 1 -OPERATION MANUAL

Overall Operation

Our system uses hardware and software elements. The users will only have to interact with our mobile
application. The user is responsible for selecting a parking lot to park in and paying for it on the
application. All other operations are automated. The hardware detects if a car is in a parking space. The
data pertaining to each parking lot is stored in a database, and each parking space has an LED that indicates
if a spot is taken, open, or reserved. Once the user wants to leave the parking lot, the hardware will
automatically detect their absence.

Application Operation

Our users will fall into two main categories: Users who reserve parking spots and users who do not reserve
parking spots. Each use case will require different operations.

i) Reservations - Before a user plans to reserve a space, they must download our application from their
smartphone’s app store. When they open the app this is the homescreen they will see, Figure 10.1.1. To
reserve a parking spot, locate and navigate to a parking lot near your destination using the map,.

34

Figure 10.1.1: App Home Screen

Parking lots are shown with red pins. Tap on the pin corresponding to a lot. Once you have clicked on a
spot, a pop-up will show the availability of the parking lot. Click “Reserve” to continue with the reservation
process.

Next, you will be taken to the “Reserve” page, Figure 10.1.2.

35

Figure 10.1.2: Reserve Screen

Automatically, a parking spot number will be shown in the “Spot #” box. Enter your personal information
to make a secure payment. You will have to enter the following information: License plate number, license
plate state, full name, country, address, credit card number, credit card expiration date, and credit card
security code. Finally, click “submit order” to complete your payment and reservation process. A receipt
will show after the payment has been received.

ii) Non-Reservations - For users who are not reserving a parking space, there will be QR codes posted on
poles in front of the parking spaces. The user must scan this code with a camera to be taken to a
one-time-use version of the application. This page will be similar to the “reservation” page, but the “Spot
#” box will be empty, refer to Figure 10.1.3.

36

Figure 10.1.3: Payment Screen

It will be up to the user to find their spot number, which will be on the pole in front of the spots as well.
The user must enter the following information: License plate number, license plate state, full name, country,
address, credit card number, credit card expiration date, and credit card security code. Finally, click “submit
order” to complete your payment and reservation process. A receipt will show after the payment has been
received.

Hardware Operation

The physical setup of the hardware system will be fairly easy. Our system is soldered and set up on perf
board. There are only a couple of physical things required to do in order to have the hardware fully
operational. The first step is to hook up the 4 RGB LEDs to their connectors. The grey connector will be
hooked up to the longest lead on the LED. The orange connector goes to the small lead on the far left,
directly next to the ground lead. The green connector will be hooked up to the second longest lead, which is
also to the right of the ground lead. Finally, the blue connector will be hooked up to the other small lead on
the far right of the LED (See Figures 10.1.4 and 10.1.5 for a more visual representation).

37

Figure 10.1.4: Pinout for an RGB LED

Figure 10.1.5: LED Setup

Once all 4 LEDS are set up, the next thing to set up is the 4 ultrasonic sensors. Each sensor will be plugged
into a board with a connector. These sensors are set up this way in order to be waterproof. All of the sensors
are built to withstand water, but the components that control and process the sensors are not built to
withstand water. See Figure 10.1.6 for a visual representation.

38

Figure 10.1.6: Ultrasonic Sensors Setup

The last physical step is to power the Arduino Nano 33. There will be a cord that is a USB connector to a
micro connector. The USB side of the cord will be plugged into a computer, and the micro connector will
be connected to the Arduino Nano. See Figure 10.1.7 to see the cord setup.

39

Figure 10.1.7: Arduino Nano Power Setup

Once the physical setup is complete, we need to ensure that the code is uploaded to the board. To complete
this, you will need to open Arduino’s IDE to the code for our project and ensure the board is connected to
our system by looking at the top left drop-down box and it should say Arduino Nano connected. If it is
connected, click the arrow pointing to the right that is labeled upload. See Figure 10.1.8 for screenshots of
what to do.

Figure 10.1.8: Arduino IDE Setup

40

Once this all goes through, our system should be up and running. You should be able to see the LEDs
changing color based on their status. If there is a car in the spot, the LED will be red. if a user reserves the
spot, the LED will be white, and if the spot is open, the LED will be green.

If this is not the case, ensure everything is hooked up correctly. If everything is hooked up correctly, try
unplugging the USB, replugging it back in, and reuploading the code to the Arduino Nano. This should fix
the issue.

41

APPENDIX 2 -ALTERNATIVE/INITIAL VERSION

Hardware Designs

Initial designs for the hardware prototype included the use of the Arduino WiFi Rev2 board which has WiFi
capabilities, but a much lower clock speed of sixteen MHz versus the Arduino Nano 33’s clock speed of
forty-eight MHz. The faster the system’s clock is, the more operations per second possible. This is
beneficial to us given that we need as many updates as possible to keep the database and thereby the
application as accurate as we can. This initial design also had an infrared(IR) transmitter and receiver to be
used as our sensors, set up as an IR curtain across parking spaces. When a vehicle would break the sensors’
line of sight this would tell the system a spot is now occupied. However, this iteration was abandoned due
to a variety of factors. The way we had designed the layout, a car could have been able to knock over a
sensor, some vehicle colors could have absorbed the signal or bounced it in a way that could have been
picked up by a receiver in another spot.

Software Designs

At the beginning of the project we planned to use a Firebase cloud server. The reason for using Firebase
was that we thought it would allow us to solve both how we were going to store data and where we would
host the server in one go. However, due to Firebase being a NoSQL solution, it lacks ACID (Atomicity,
Consistency, Isolation, Durable) properties. Therefore, we would have experienced unknown behavior
when two users try to reserve the same spot. To fix this oversight, we moved to MySQL for our database
solution as it uses basic SQL and therefore has transaction processing.

APPENDIX 3 -OTHER CONSIDERATIONS

User Profiles

42

Figure 10.3.1: User Profiles

43

APPENDIX 4 -CODE

GitHub Repository Links:

Mobile App: https://github.com/Smartpark-sddec24/Frontend

Hardware: https://github.com/Smartpark-sddec24/Hardware

Server: https://github.com/Smartpark-sddec24/Backend

APPENDIX 5 -TEAM

Team Contract
Team Name: 17

Team Members:
1) William Clemmons​ 2) Kennedey Reiling
3) Brian Witherspoon ​ 4) Zachary Sears
5) Mubassir Serneabat Sudipto​ 6) Ethan Haberer

Team Procedures

1.​ Day, time, and location (face-to-face or virtual) for regular team meetings:
-​ Spring semester:

-​ Project Team: Tuesday from 6:00 PM to 7:00 PM, Thursday from 6:00 PM
to 7:00 PM.

-​ Fall semester:
-​ Hardware team: Monday, Tuesday, Friday from 1:00 PM to 3:00 PM
-​ Software team: Friday from 10:30 AM to 12:30 PM
-​ Project team: Monday from 7:00 PM to 9:00 PM

2.​ Preferred method of communication updates, reminders, issues, and scheduling (e.g., e-mail,
phone, app, face-to-face):

-​ Face-to-face meetings are preferred but online is acceptable.
3.​ Decision-making policy (e.g., consensus, majority vote):

-​ Group conversation turning to majority vote.
4.​ Procedures for record keeping (i.e., who will keep meeting minutes, how will minutes be

shared/archived):
-​ Shared decision based on group majority decision.

Participation Expectations

1.​ Expected individual attendance, punctuality, and participation at all team meetings:
-​ All group members must come to planned meetings. If unable to attend, the group

member must inform the team.
2.​ Expected level of responsibility for fulfilling team assignments, timelines, and deadlines:

-​ Each group member will be assigned a relevant task to their skill set as the project
progresses. Each team member will be expected to complete the task by the timeline.
The group will discuss and work around the issue if the deadline still needs to be
met.

3.​ Expected level of communication with other team members:

44

https://github.com/Smartpark-sddec24/Frontend.git
https://github.com/Smartpark-sddec24/Hardware
https://github.com/Smartpark-sddec24/Backend

-​ Team members will be expected to communicate any adjustments made to the
project to the team members that will be affected while also making sure other
group members understand.

4.​ Expected level of commitment to team decisions and tasks:
-​ Everyone will be expected to participate and complete their tasks. There will be

open and honest communication.

Leadership

1.​ Leadership roles for each team member (e.g., team organization, client interaction, individual
component design, testing, etc.):​

Role Description Assignee(s)

Project Lead Make sure that the team is
organized and on the same page.

William Clemmons

Client Interaction Responsible for reaching out to the
client when needed.

Mubassir Serneabat Sudipto,
Kennedey Reiling

Quality Control Double-check designs and
documents to make sure that they
meet requirements.

Mubassir Serneabat Sudipto,
Zachary Sears, Ethan Haberer

Hardware Design Responsible for hardware aspects
of the project.

Brian Witherspoon, Kennedey
Reiling, Ethan Haberer, Zachary
Sears

Software Design Accountable for software aspects of
the project.

William Clemmons, Mubassir
Serneabat Sudipto

2.​ Strategies for supporting and guiding the work of all team members:
-​ a. Constant and honest communication is to be kept when working. Updates are to

be given in the updates chat of our team discord.
b. Any help needed should be reported in the help channel of our discord.
c. Have a structured to-do list so each person knows what to do.

3.​ Strategies for recognizing the contributions of all team members:
-​ Have an updated page in our team chat to track what people have

completed/contributed.

Collaboration and Inclusion

1.​ Describe the skills, expertise, and unique perspectives each team member brings to the team.

Name Major Most Relevant Skills

William Clemmons Software Engineering Embedded Systems, Software,
Presentations.

Kennedey Reiling Electrical Engineering Circuitry/Hardware design,
Embedded Systems, Modeling,

Client Relationship.

45

Brian Witherspoon Electrical Engineering Circuitry, Hardware design,
Modeling, Documentation.

Zachary Sears Computer Engineering Embedded Systems, Hardware
design,

Programming, Documentation.

Mubassir Serneabat Sudipto Cyber Security Engineering System Security Essentials,
Scripting, Debugging, Penetration
Testing, Technical Documentation,

Professional Presentations.

Ethan Haberer Electrical Engineering Circuit Design, Modeling,
Technical Documentation,

Programming.

2.​ Strategies for encouraging and supporting contributions and ideas from all team members:
-​ a. Having democratic and non-judgmental discussions about design decisions when

necessary.
b. Everyone will be encouraged to speak their opinions.
c. Create a brain dump channel on Discord for when someone has an idea, they can
put it in there for review later.

3.​ Procedures for identifying and resolving collaboration or inclusion issues (e.g., how will a team
member inform the team that the team environment obstructs their opportunity or ability to
contribute?)

-​ a. Consult the team to gather group input on how to proceed.
b. Adjust how the team operates to include anyone who needs to be included.

Goal-Setting, Planning, and Execution

1.​ Team goals for this semester:
-​ a. Completion of the overall design of our project.

b. Gain a working-level knowledge of the components of the project.

2.​ Strategies for planning and assigning individual and teamwork:
-​ a. Have a timeline with specific deadlines and tasks that must be completed.

b. Delegate work based on skill set.
c. Preplanning to understand what will be required and who will be responsible.

3.​ Strategies for keeping on task:
-​ Have a specific plan from the beginning of our project and continuously update it to

fit the timeline.

Consequences for Not Adhering to Team Contract

1.​ How will you handle infractions of any of the obligations of this team contract?
-​ One single offense: bring it up to the team either in the discord or in our next

meeting.
2.​ What will your team do if the infractions continue?

-​ After repeated offenses, the problem will be discussed with our advisor and
professor if needed.

46

a) I participated in formulating the standards, roles, and procedures as stated in this contract.
b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the
consequences as stated in this contract.

1) William Clemmons​ DATE: 01/30/2024
2) Kennedey Reiling ​ DATE: 01/30/2024
3) Brian Witherspoon​ DATE: 01/30/2024
4) Zachary Sears​ DATE: 01/30/2024
5) Mubassir Serneabat Sudipto​ DATE: 01/30/2024
6) Ethan Haberer​ DATE: 01/30/2024

47

APPENDIX 6 GLOSSARY

Term Definition

Arduino Brand of microcontroller to integrate hardware
with software

Database Manages and stores permanent data across the
system

Infrared Sensor (IR) Emits light in the infrared range and determine
how much light is reflected back to the receiver

Internet of Things (IoT) The interconnection via the internet of computing
devices embedded in everyday objects, enabling
them to send and receive data

LiDAR Light Detecting and Ranging sensor sends our a
laser and scans its surroundings

Nano 33 IoT Specific Microcontroller from Arduino that we are
using in our project

PCB Printed Circuit Board

Perf Board Perforated board used for prototyping electrical
components by soldering

QR Code Quick Response Code

Request A message sent to the get information from the
database

RGB LED Red Blue Green Light Emitting Diode

Server Software responsible for answering requests from
both hardware and the mobile application. It
retrieves and modifies the database

Stripe A third-party software that gives users the ability
to implement payment systems

Ultrasonic Sensors Distance sensors that send out a sound wave which
times how long it take for the wave to go to a
object and then back to the sensor and based on
this time it calculates the distance

WiFi NINA W102 Chip on the Arduino Nano that allows us to
connect to WiFi networks

48

	1 Introduction
	1.1 PROBLEM STATEMENT
	1.2 INTENDED USERS

	2 Requirements, Constraints, And Standards
	2.1​REQUIREMENTS & CONSTRAINTS
	2.2​ENGINEERING STANDARDS

	3 Project Plan
	3.1 PROJECT MANAGEMENT/TRACKING PROCEDURES
	3.2 TASK DECOMPOSITION
	3.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.4 PROJECT TIMELINE/SCHEDULE
	3.5 RISKS AND RISK MANAGEMENT/MITIGATION
	3.6 PERSONNEL EFFORT REQUIREMENTS
	3.7 OTHER RESOURCE REQUIREMENTS

	4 Design
	4.1 DESIGN CONTEXT
	4.1.1 Broader Context
	4.1.2 Prior Work/Solutions
	4.1.3 Technical Complexity​

	4.2 DESIGN EXPLORATION
	4.2.1 Design Decisions
	4.2.2 Ideation
	4.2.3 Decision-Making and Trade-Off

	4.3 PROPOSED DESIGN
	4.3.1 Overview
	4.3.2 Detailed Design and Visual(s)
	4.3.3 Functionality
	4.3.4 Areas of Challenge

	4.5 DESIGN ANALYSIS

	5 Testing
	5.1 UNIT TESTING
	5.2 INTERFACE TESTING
	5.3 INTEGRATION TESTING
	5.4 SYSTEM TESTING
	5.5 REGRESSION TESTING
	5.6 ACCEPTANCE TESTING
	5.7 SECURITY TESTING
	5.8 RESULTS

	6 Implementation
	7 Professional Responsibility
	7.1 AREAS OF RESPONSIBILITY
	7.2 PROJECT-SPECIFIC PROFESSIONAL RESPONSIBILITY AREAS
	7.3 MOST APPLICABLE PROFESSIONAL RESPONSIBILITY AREA

	8 Closing Material
	8.1 SUMMARY OF PROGRESS
	8.2 VALUE PROVIDED
	8.3 NEXT STEPS

	9 References
	10 Appendices
	APPENDIX 1 -OPERATION MANUAL
	APPENDIX 2 -ALTERNATIVE/INITIAL VERSION
	APPENDIX 3 -OTHER CONSIDERATIONS
	User Profiles

	APPENDIX 4 -CODE
	APPENDIX 5 -TEAM
	Team Contract

	APPENDIX 6 GLOSSARY

